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Recent studies of autism spectrum disorders (ASD) highlight hyperactivity of the immune system, irreg-

ular neuronal growth and increased size and number of microglia. Though the small sample size in many

of these studies limits extrapolation to all individuals with ASD, there is mounting evidence of both

immune and nervous system related pathogenesis in at least a subset of patients with ASD. Given the dis-

turbing rise in incidence rates for ASD, and the fact that no pharmacological therapy for ASD has been

approved by the Food and Drug Administration (FDA), there is an urgent need for new therapeutic

options. Research in the therapeutic effects of mesenchymal stem cells (MSC) for other immunological

and neurological conditions has shown promising results in preclinical and even clinical studies. MSC

have demonstrated the ability to suppress the immune system and to promote neurogenesis with a

promising safety profile. The working hypothesis of this paper is that the potentially synergistic ability

of MSC to modulate a hyperactive immune system and its ability to promote neurogenesis make it an

attractive potential therapeutic option specifically for ASD. Theoretical mechanisms of action will be sug-

gested, but further research is necessary to support these hypothetical pathways. The choice of tissue

source, type of cell, and most appropriate ages for therapeutic intervention remain open questions for

further consideration. Concern over poor regulatory control of stem cell studies or treatment, and the

unique ethical challenges that each child with ASD presents, demands that future research be conducted

with particular caution before widespread use of the proposed therapeutic intervention is implemented.

� 2014 Elsevier Ltd. All rights reserved.

Introduction/background

ASD are a group of heterogeneous neurodevelopmental disor-

ders presenting in early childhood with a prevalence of 0.7–2.6%

[1]. The diagnosis is based on a clinical triad of repetitive behavior,

impaired social interactions and communication skills. ASD per-

sists for life with major implications for the individual, the family

and the entire health care system [2]. While the etiology remains

unknown, various indications suggest an association with immune

dysfunction [3]. There are currently no FDA approved therapies for

ASD but only for symptoms such as aggression/tantrums associ-

ated with ASD. There is therefore an urgent need to explore the

pathogenesis of ASD in order to inform and develop effective ther-

apeutic opportunities.

Recent preclinical and clinical research on the therapeutic role

of mesenchymal stem cells (MSC) also known as multi-potent stro-

mal/stem cells for neurological and autoimmune diseases, has

shown promising results. The known immune-modulating proper-

ties of MSC support our hypothesis that there may be a potential

effect on at least a subset of children with ASD that display

immune dysfunction. Furthermore, the ability of MSCs to promote

neurogenesis in neuro-degenerative conditions [4] supports the

hypothesis of a potential therapeutic effect in neuro-developmen-

tal impairments such as ASD. MSC have been studied in many
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clinical settings [5], leading to their first regulatory approval for

treatment of graft versus host disease in the pediatric population.

In this article, we will describe the immune modulatory proper-

ties of MSC, the effects of MSC on the nervous system, the immune

characteristics of ASD, and the neurological attributes of ASD in an

effort to present a rationale for their use in ASD. Ongoing clinical

success with MSC in related conditions, including safety profiles,

will help inform the strategy for such use in ASD, and identify fur-

ther areas for research in the field.

Only some of the neuropathological and immunological find-

ings in ASD that are at present deemed germane to mechanism

of action of potential MSC therapy are presented.

Evidence supporting the hypothesis of neurological and

immunological components of ASD

The nervous system and ASD

Post-mortem studies and magnetic resonance imaging (MRI)

indicate an atypical pattern of early overgrowth in total brain vol-

ume during the toddler years in some infants with ASD [6], fol-

lowed by a slowing down of growth during childhood and

adulthood [7,8]. Explanations for this early growth pattern, and

attempts at localizing specifically affected areas of the brain have

proven controversial. Increase in the number of neurons [9],

increase in neuronal dendritic volume and synapses [10], and

increase in the number and size of microglial cells [11] are three

posited explanations for the unusual growth pattern in ASD. In

addition, important findings of increased numbers and size of

microglia and excessive microglial activation has been shown in

wide age range of individuals with ASD [12–14]. Genetic findings

linking ASD to a number of pathways associated with neuronal

synaptic function including the SHANK3 gene and mutations of

other synaptic cell adhesion molecules, suggest that ASD may

result, at least partially, from disruption of synapse formation or

elimination [15,16].

The immune system and ASD

In 1971 Money et al. first reported an association between fam-

ily history of immune system dysfunction and ASD [17]. Since that

time, research on whether there is or is not immune dysfunction in

ASD, has been divided into three major categories:

� Epidemiological studies demonstrating an association between

family history of autoimmune diseases (Table 1) and ASD [18].

� Immune biological markers or signatures in the blood of chil-

dren with ASD [19] and in postmortem brain specimens [20].

� Immunogenetics, aiming to identify Human Leukocyte Antigen

(HLA) associations or other gene products associated with ASD

[21–24].

Work on immune profiles in ASD [25] has demonstrated that a

state of immune dysfunction exists in at least a subset of children

with ASD, as reflected by deviations in levels of cytokines [26] or

other immune factors [27,28]. With many of these studies showing

that as immune activation increases there is a correlation to more

impaired behavior [29,30]. Similarly, a few studies have focused on

the role of autoantibodies in autism and their relationship with

behavior [31–33]. In particular, several studies point to increased

autoimmunity in children with ASD. Recently we reviewed the var-

ious autoimmune components of ASD [3] in light of the Rose–Bona

criteria for autoimmune diseases (Table 2, Fig. 1).

While the focus of this proposal is to highlight immune features

in children with ASD that can potentially serve as targets for MSC

therapy, a brief discussion of the immune status of mothers of chil-

dren with ASD is in order, due to the interesting findings support-

ing the overall theory of an immune etiology in a subset of children

with ASD. One study demonstrated a correlation between maternal

antibody status and behavior of children with ASD [34]. Maternal

antibodies from the human mother of a child with ASD were

injected into a pregnant mouse and the offspring of the mouse

demonstrated behavioral changes, despite the fact that the preg-

nant mouse did not exhibit any abnormalities [35–37]. Similar

studies were performed on rhesus monkeys with similar results

[38,39]. Additionally, recent research of maternal immune activa-

tion models suggests lasting changes in macrophage function

[40]. Though these results strongly suggest that the immune aber-

rations detected during pregnancy and in infants with ASD are con-

nected to behavioral changes that occur in individuals with ASD,

caution must be exercised regarding over-interpretation of such

connections until such studies are repeated and expanded. Never-

theless, the methodology presents an exciting opportunity to

assess the inter-relationship between ASD and the immune

system.

Now that the immune aspects of at least a subset of children

with ASD have been identified, the literature on MSC therapy with

a particular focus on the effect of MSCs on the immune system will

be reviewed in order to support the hypothesis that MSC therapy is

particularly suited for ASD.

Suggested neurological and immunological properties and

mechanisms of MSC

Recent research suggests several possible properties of MSC,

that have therapeutic potential for what some previously regarded

as untreatable conditions [41]. These include: the ability to differ-

entiate in vitro into a variety of cell types including bone, cartilage,

muscle, and nerve; their ‘‘immune privileged’’ status (or ability to

avoid immunological allorecognition), and their ability to cause

immunosuppression. MSC also secrete a multitude of growth fac-

tors which impact endogenous regeneration and tissue repair. In

choosing stem cells for any clinical indication, several basic ques-

tions must be addressed.

Type of stem cell

Embryonic stem cells (ESC) contain the complete set of genes of

the body. They are capable of dividing indefinitely and developing

into any cell type of the body (pluripotency), but due to potentially

uncontrolled proliferation there is controversy and legal limita-

tions upon their research and clinical use.

Adult stem cells (or tissue-specific cells) are capableof renewaland

trans-differentiation and replenish cells of the body as needed. Their

ability todevelop intoother cell types is genetically regulated to shut

off as the specialization process goes on. They are more limited in

their ability todifferentiate intodifferentorgan-specific lineage than

Table 1

Immunological diseases in the family history of children with ASD.

Disease [18,172–175]

� Rheumatoid arthritis

� Celiac disease

� Diabetes (Type 1)

� Ulcerative Colitis

� Psoriasis [176]

� Hypothyroidism/Hashimoto’s thyroiditis; [177,178]

� Rheumatic fever

� Idiopathic Thrombocytopenic Purpura (ITP)

� Myasthenia Gravis
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the more versatile ESC. The bone marrow contains two major types

of stem cells, hematopoietic stem cells (HSC) and MSC. HSC have

been used successfully over decades for autologous and allogeneic

HSC-transplantations. TheMSCaredefinedby theirbiological capac-

ity to differentiate in vitro into various organ-specific cells such as

adipocytes, osteocytes, connective tissues and chondrocytes. MSC

can be harvested from umbilical cord tissue and blood, dental pulp,

amnioticfluid, adipose tissue, andother sources.MSChavebeenpro-

ven to possess immune-modulatory properties (see ‘‘Effect of MSC

on the immune system’’ below).

Neural stem cells (NSC) are self-renewing, multipotent cells that

differentiate into neurons, astrocytes, and oligodendrocytes. NSC

are found throughout the fetal central nervous system (CNS) and

in the adult forebrain. Upon transplantation, NSC have been found

to be neuro-protective [42] through either cell replacement, immu-

nomodulatory effects [43], or endogenous repair. The complex role

of Toll-like receptors and microglia [43] in neurogenesis and on

NSC [44] is potentially of interest in ASD.

The choice between MSC and NSC for ASD demands further

research and might depend on the underlying pathology of ASD,

among other considerations. Due to more extensive experience

with MSC, we will limit our discussion to MSC.

Tissue source

Four main tissue sources are typically harvested for stem cells.

These include bone marrow (BM-MSC), adipose (AT-MSC),

placental (hp-MSC), umbilical cord (UC-MSC). In assessing the dif-

ferences between the various tissue sources, studies have compared

the following categories: immunogenicity, immunomodulatory

effect, availability, proliferative potential, migratory potential,

expression of activation markers, indoleamine 2,3-dioxygenase

(IDO) activation, and ability to differentiate into various cell types

in vitro. Further head to head research comparing these tissue

sources specifically in the context of immunogenicity and immune

modulation would elucidate which might be more appropriate for

potential ASD treatment.

Effect of MSC on the nervous system

Potential mechanisms of action of MSC on the nervous system

The mechanisms of action of MSC on the nervous system

remain largely unknown, but are an intense area of research. Some

of the suggested mechanisms of action include: (A) neuroprotec-

tion [45,46], (B) neurogenesis [47], and (C) synaptogenesis [48].

(A) The potential utility of MSC for the protection of neural tis-

sue from degeneration and apoptosis [49] via autocrine and

paracrine mechanisms has been demonstrated by the

release of neurotrophins [50,51], inhibition of neuron apop-

tosis [52], inhibition of microglia activation [53], induction

of microglia phenotype switch [54], inhibition of astrocyte

proliferation [55], and inhibition of oxidative stress mole-

cules [56].

Table 2

Rose–Bona criteria for auto-immune diseases [179].

A. Direct proof B. Indirect evidence C. Circumstantial evidence

1. Human–Human Transfer
� Disease is reproduced in normal recipient by direct transfer of autoantibody

e.g. Idiopathic Thrombocytopenic Purpura (ITP)

� Transplacental transmission of pathogenic IgG autoantibody from an

afflicted mother to the fetus e.g. neonatal myasthenia, Graves, polychondritis

� Autoantibody not recognized as pathogenic in mother produces disease in

infant e.g. anti-Ro, Anti-TSH

� Identify offending antigen

� Isolate equivalent antigen

in animal

� Reproduce essential feature

of disease by immunization

� Association with other autoimmune diseases

in same individual or in his family history

� Lymphocytic infiltration

� Statistical association with particular MHC

haplotype

� Favorable response to immunosuppression

2. Human–Animal Transfer

e.g. Pemphigus, AchR, T cell transfers to severe combined immunodeficiency

(SCID) mice

3. Demonstrate pathogenicity of an antibody in in vitro destruction of cells with

corresponding antigen e.g. paroxysmal cold hemoglobinuria

Fig. 1. Immunology in the pathogenesis of autism. Source: Journal of Autoimmunity.
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(B) To date there is some evidence that MSC induce endogenous

neurogenesis [57,58], and there is mounting evidence that

MSC differentiate into functional neurons in vitro [59–61].

(C) One proposal for the mechanism by which MSC improve

neurological function is that MSC supply bioactive agents

that stimulate the action of intrinsic neural progenitor cells

to regenerate functional neurological pathways including

via synaptogenesis [62]. Some researchers have suggested

that MSC transplantation increases synaptic plasticity of

existing and newly formed neurons [63]. One mechanism

for sustaining synaptic plasticity might be via stimulation

of tissue plasminogen activator (tPA) production and

increasing synaptophysin expression [64]. Reduction of syn-

aptic detachment mediated via brain-derived neurotrophic

factor (BDNF) release or astroglia has also been proposed

as an effect of MSC [48]. Exogenous BDNF has been found

to repair synaptic circuitry [65]. Glial cells have been sug-

gested to be involved in controlling synapse number [66].

Two groups found increased expression of the synaptogene-

sis marker synaptophysin after administration of MSC

[67,68]. Others have suggested that MSC upregulate neuro-

transmitter receptors contributing to synapse formation

through cell fusion-like processes [69]. Further research is

necessary to understand the precise mechanisms for the

effect of MSC on synaptogenesis.

In light of the above mentioned known effects of MSCs on the

nervous system, a variety of studies have begun investigating the

utility of MSCs in neurological diseases.

Experience with MSC in neurological diseases

In recent years MSC have been studied in a variety of preclinical

models and applied clinically. We will focus on the current experi-

ence in neurological diseases relevant for to our hypothesis of

treating ASD with MSC.

MSC are a unique subset of stem cells endowed with multiple

capabilities relevant to neurological diseases (Table 4) [41,70,71].

These capabilities include ability of MSC to induce neurogenesis

[58,72,73], neuroprotection [47,56,74–76], neural regeneration

[4,77], remyelination [78–80], and angiogenesis [81,82]. Preclinical

and clinical studies with MSC significantly improved the clinical

course of neurological diseases [83]. These include induction of

neuronal plasticity and remodeling of the brain in multiple sclero-

sis (MS) [84–86] and tissue regeneration e.g. in spinal cord injury

[84,87]. Similar improvement by MSC treatment was detected in

animal models of stroke [88], Amyotrophic lateral sclerosis (ALS)

[89], Huntington’s disease [90] and Parkinson’s disease [91,92].

Furthermore, preclinical data suggest potential benefits of MSC

for neuropsychiatric disorders [93].

Effect of MSC on the immune system

Potential mechanisms of action of MSC on the immune system

MSC have the ability to communicate with damaged tissues,

where they can trigger immunosuppression or immune enhance-

ment depending on the milieu, and engraft at sites of inflammation

or injury [94]. MSC possess unique immunological properties

including expression of major histocompatibility complex (MHC)

class I molecules but not MHC class II molecules [95–98]. There-

fore, they normally do not act as antigen presenting cells

[99,100], a feature that becomes important in their clinical use

and they demonstrate a so-called ‘stealth’ ability to go undetected

by a host immune system [101]. MSC have demonstrated complex

immunomodulatory effects [102–104,100,105,106] on both

humoral and cell mediated immune responses [107–111]. In the

cell-mediated immune response [109–111] MSC inhibit T cell prolif-

eration, decrease pro-inflammatory cytokine production like

tumor necrosis factor-alpha (TNF-a), interferon gamma (IFN-c)
and decrease cell-mediated cytotoxicity [110,112–121]. MSC have

also been found to inhibit natural killer (NK) cell proliferation, NK

cell cytokine production and NK cell-mediated cytotoxicity

through various mechanisms [122–124] still under investigation

as discussed below (section ‘‘Experience with MSC in immunolog-

ical and autoimmune diseases’’). In the humoral response, MSC inhi-

bit B cell proliferation, maturation, migration, and immunoglobulin

and antibody production [125,126]. Beyond the effect of MSC on T

cells and B cells, MSC also exert an inhibitory effect on dendritic

cell maturation, activation, and antigen presentation [127–129].

Furthermore, MSC have been found to block recruitment of neutro-

phils, likely protect neutrophils from apoptosis, and block produc-

tion of TNF-a from activated macrophages [130,131]. It is not clear

that the protective effect against neutrophil apoptosis is beneficial,

as neutrophils are supposed to die off quickly. MSC can also sup-

press the delayed type hypersensitivity response in C57BL/6

(H2b) mice [132].

When MSC enter injured tissues, inflammatory triggers such as

cytokines stimulate the release of many growth factors by MSC

[94] including: epidermal growth factor (EGF), fibroblast growth

factor (FGF), platelet-derived growth factor (PDGF), transforming

growth factor-beta (TGF-b), vascular endothelial growth factor

(VEGF), hepatocyte growth factor (HGF), insulin growth factor-1

(IGF-1), angiopoietin-1 (Ang-1), keratinocyte growth factor (KGF)

and stromal cell-derived factor-1 (SDF-1) [133–136]. In addition,

MSCs produce various factors, such as Ang-1, VEGF, HGF, EGF,

PDGF, FGF, KGF and TGF-b, which maintain endothelial integrity

and regulate endothelial cell proliferation [94].

Table 3

Allogeneic versus autologous.

Autologous source of MSC Allogeneic source of MSC

� Patient’s own cells (might be affected by disease)

� No immune reactions

� Bone marrow aspiration & sedation required

� Laboratory work necessary for each patient

� Procedure dependent treatment

� Expensive and time consuming

� From healthy & young individuals

� Potential immune reaction

� No need for procedure and laboratory work (for commercial MSCs)

� Cellular treatment is clinically ready to go

� Opportunity for patentability

Table 4

MSCs and neurological diseases.

Disease Current state of research

� Multiple sclerosis (MS) [180] Clinical Trials-ongoing

� Spinal cord injury [181] Clinical Trials-ongoing

� Stroke [182] Clinical Trials-ongoing

� Amyotrophic lateral sclerosis (ALS) [183] Clinical Trials-ongoing

� Huntington’s disease (HD) [184] Preclinical

� Parkinson’s disease (PD) [185] Clinical Trials-ongoing
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Most importantly, various studies demonstrated a specific

effect of MSC on microglia [54], which play a crucial role in ASD

(as discussed above in section ‘‘The nervous system and ASD’’). In

experimental ALS, the number of microglia cells was significantly

decreased in the spinal cord after administration of MSC [137].

Similar results were reported in a rat focal ischemia model of

transient middle cerebral artery occlusion [138] and neonatal

hypoxic-ischemic brain injury, where MSC reduced expansion of

microglia and favoring the formation of new neurons. [63] In

experimental Parkinson’s disease, hMSC treatment significantly

decreased lipopolysaccharide (LPS)-induced microglial activation

[139]. Controversy exists whether the immunosuppressive effect

of MSC is a direct effect or requires activation via cytokines

[99,100,117,140]. While further investigation is needed, the major-

ity of the evidence points to an inhibitory role of MSC on immune

function.

Various theories try to elucidate the possible mechanisms of

action of MSC on the immune system with two possible mecha-

nisms discussed most in the literature to date being:

1. MSC induce the inhibition of T cells via an indoleamine 2,3-

dioxygenase (IDO) immunosuppressive pathway [115,141,142]

2. MSC introduce two negative feedback loops in the very early

phase of inflammation by secretion of prostaglandin (PGE2)

and TNF-stimulated gene 6 protein (TSG-6)

[103,110,122,143,144]. PGE2 is known to inhibit T cell prolifer-

ation, to affect apoptosis of T cells in either direction depending

on the maturation and activation state of the cell [144], and

influence the production of cytokines by T cells [144]. PGE2 is

also known to induce and suppress B cells depending on the

maturity of the B cells. In addition, PGE2 can modulate the func-

tion of antigen presenting cells such as dendritic cells [145] and

macrophages. In fact, PGE2 released by MSC can reprogram

macrophages to produce more IL-10, inhibit dendritic cell mat-

uration, and shift the balance between TH1 and TH2

[94,110,129,146].

TSG-6 is expressed at sites of inflammation and has been shown

to reduce inflammatory damage through inhibiting CXCL8-induced

transendothelial migration of human neutrophils [147–150].

It would go beyond the scope of this hypothesis paper, to fully

discuss the interaction and synergisms of the mechanisms above

[122]. However, it is known that in the presence of PGE2, the effects

of IDO in MSC-mediated immunoregulation of T-cell proliferation

and NK cell activation can also be enhanced [122]. Furthermore,

these mechanisms might be species-specific [151,152].

Experience with MSC in immunological and autoimmune diseases

Attempts at capitalizing on the unique immune regulatory

properties of MSC (see section ‘‘Potential mechanisms of action

of MSC on the immune system’’ above) for the prevention and

treatment of autoimmune diseases have produced conflicting

results both at the preclinical and clinical levels (Table 5). Some

of the conditions that have been targeted for MSC treatment

include graft-versus-host-disease (GVHD) [153], MS [154], rheu-

matoid arthritis [155,156] and type I diabetes [157]. In GVHD, at

the clinical level, Le Blanc et al. found that more than half of the

patients with steroid-refractory acute GVHD responded to treat-

ment with MSC and their survival rate was better than in patients

not treated with MSC [153]. Recently, MSC treatment for GVHD

became the first pediatric indication to be approved by Health Can-

ada [158].

For MS, at the preclinical level, in the experimental autoim-

mune encephalomyelitis (EAE) model, disease onset improved

after administration of MSC [120]. In clinical phase I trials, MSC

administered intravenously or intrathecally are well tolerated,

with some preliminary evidence of efficacy [84,159].

In type I diabetes, at the preclinical level, the administration of

bone marrow cells (BMC) and MSC to a model of murine Streptozo-

tocin (STZ)-induced diabetes resulted in blood glucose and serum

insulin levels returning to normal levels [160]. Research at the clin-

ical level is currently ongoing.

In Collagen Induced Arthritis (CIA – a mouse analogue of RA),

cell therapy using allogeneic bone marrow derived MSC prevents

tissue damage [161]. Similarly, administration of human adipose-

derived MSC prior to CIA disease onset markedly decreased the

incidence of arthritis, ameliorated clinical signs, hindered damage

to the joints, and administration of AT-MSC after disease had

entered an irreversible clinical course, displayed a true therapeutic

effect for CIA [162].

Hypothesis-the neuroimmune properties of MSC are well suited

to address neuroimmune dysregulation in ASD

In assessing the therapeutic value of MSC therapy in ASD, the

various suggested mechanisms of action for the effect of MSC must

be discussed along with any potential synergistic effect among

them. Though the immunological and neurological investigations

of ASD might represent separate phenomena, integrating them

suggests that both immune dysfunction and unusual patterns of

neurological growth at a very young age might be the underlying

pathology in at least a subset of children with ASD. Genetic

research linking ASD to synapse-associated genes such as SHANK3,

combined with an understanding of the interplay of microglia with

synapses [163], and an appreciation of the pathological microglial

findings in ASD, suggest that this is a fertile area for further

research that might have clinical applications.

Based on the known beneficial effects of MSC for various neuro-

logical and immunological conditions and their encouraging safety

profile, MSC offer a logical and promising treatment option for ASD.

The ability of MSC to suppress the immune response and potential

for neuroprotection, neurogenesis, and synaptogenesis suggest a

potential synergistic effect that matches the suggested underlying

pathology of a subset of ASD individuals. Clinical studies must still

determine the preferred age, source, dosages and administration

for the treatment of children with ASD using MSC and ethical con-

cerns must be addressed.

Clinical strategies

Many critical open questions regarding the most effective pro-

tocol for treating ASD with MSC exist, including whether the cells

should be autologous or allogeneic (Table 3), the preferred route of

administration (IV, IM, Intraventricular), the ideal age, disease sta-

tus, and the proper dosage. The discussion of these questions is

beyond the scope of this paper and need to be addressed in future

research. Studies with MSC derived from cord blood are currently

ongoing [164]. Initial results demonstrate statistically significant

improvement in Childhood Autism Rating Scale (CARS), Aberrant

Table 5

MSCs and immunological/autoimmune diseases.

Disease Current state of research

� Graft versus host disease (GVHD)

[84,158]

Approved by Canada Health in pediatric

population

� Multiple sclerosis (MS) [180] Clinical Trials-ongoing

� Rheumatoid arthritis (RA) [162] Preclinical

� Type I diabetes [157] Clinical Trials-ongoing
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Behavior Checklist (ABC) scores and Clinical Global Impression

(CGI) evaluation in groups treated with human cord blood mono-

nuclear cells (CBMNCs) and umbilical cord-derived mesenchymal

stem cells (UCMSCs) compared to the control at 24 weeks post-

treatment (p < 0.05). No safety issues were noted during or the

monitoring period. Some of the limitations of this study include

small sample size (n = 37), the fact that it was non-blinded, non-

randomized, and that Autism Diagnostic Observation Schedule

(ADOS), the current gold standard for ASD diagnosis was not used.

Safety profile

A recent systematic review and meta-analysis of clinical trials

using MSC that included over a thousand participants concluded

that MSC are safe [165]. A review of twenty-four reported clinical

trials with MSC for various indications, found no reports of either

acute, long-term or major adverse events including carcinogenesis,

as a result of administering allogeneic MSC [166]. Furthermore,

Prockop et al. analyzed over 100 registered clinical trials 2010

and found no reported significant adverse events. [5] Finally, while

the clinical use of MSC was reported to be safe even for the pediat-

ric population [158,167], caution should still prevail as no long-

term data are currently available.

Ethical considerations and potential evidence against the hypothesis

Beyond the scientific extrapolations necessary for applying

research from neurodegenerative diseases to a neurodevelopmen-

tal one such as ASD, there are ethical considerations to take into

account: One might argue that in life-threatening conditions like

ALS, MS, GVHD etc. the risk/benefit ratio justifies administration

of MSC with informed consent of the patients, while ASD is not a

life-threatening condition; however, it is a serious and lifelong

chronic condition with no currently available effective therapies

[168] and delaying clinical trials for ASD until >18 years old is

not a solution since it is possible that the optimal therapeutic effect

is at a young age (<5 years) due to increased neuronal plasticity in

the young brain compared to older children. Since there are major

difficulties in determining an optimal animal model for ASD, [169]

the rationale for MSC treatment for ASD has to rely on the research

of other clinical conditions, which provide empiric support to jus-

tify the administration of MSC for ASD.

Parents of children with ASD desperately search for treatments

[170] but innovative therapies without properly controlled studies

might not in the best interest of these children [171]. Presenting

the therapeutic rationale with the scientific community for this

promising treatment option encourages international scientific

and clinical collaboration for properly controlled studies for MSC

in ASD. Hopefully, the results of this future research will deepen

understanding of the underlying pathology of ASD and open up

the potential for new treatment options.

Conclusion

A careful investigation of the ASD literature exhibits mounting

evidence that at least a subset of children with ASD have either

abnormalities in their immune profile, and/or abnormal neuronal

and synaptic growth. In analyzing MSC literature, early preclinical

and clinical experience demonstrates that MSC suppress the

immune system through a variety of potential mechanisms and

increase neuronal growth. Further regulated research is required

to assess the hypothesis that these qualities of MSC make it a

potential therapeutic option for at least a subset of children with

ASD. The potential implications of successful clinical trials with

MSC for ASD are particularly rewarding considering the current

lack of treatment options and the rapid rise in the prevalence of

ASD.
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